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Abstract
Issues regarding missing data are critical in observational and experimental research.
Recently, for datasets with mixed continuous–discrete variables, multiple imputa-
tion by chained equation (MICE) has been widely used, although MICE may yield
severely biased estimates. We propose a new semiparametric Bayes multiple imputa-
tion approach that can deal with continuous and discrete variables. This enables us to
overcome the shortcomings of MICE; they must satisfy strong conditions (known as
compatibility) to guarantee obtained estimators are consistent. Our simulation studies
show the coverage probability of 95% interval calculated using MICE can be less
than 1%, while the MSE of the proposed can be less than one-fiftieth. We applied our
method to the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset, and the
results are consistent with those of the previous works that used panel data other than
ADNI database, whereas the existing methods, such as MICE, resulted in inconsistent
results.
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1 Introduction

Issues regarding missing data are critical in observational and experimental research,
as they induce loss of information and biased result, and at times, lead to wrong
decisions. The National Research Council (2010) published a report including rec-
ommendations on treating missing data in medical science research. According to
the recommendation, researchers should employ as many confounders as possible in
order to obtain valid estimates from analysis such as logistic regressions or Cox pro-
portional hazards model. However, when they employ more covariates, the number of
observations with at least one missing component increases. Also, if a researcher is
interested in using a regression model containing missing components in covariates, a
complete case analysis results in biased estimates even when the missing mechanism
is missing at random (MAR) (Ibrahim et al. 2005).

In this case, if conditional distributions of incompletely observed covariates, given
completely observed covariates, are correctly specified, we can obtain consistent esti-
mators using the expectation-maximization (EM) algorithm or Bayesian estimation
with the Markov chain Monte Carlo (MCMC) method. However, it is usually diffi-
cult to specify such a distribution because both incompletely and completely observed
covariates generally have large dimensions, and the distributional form is not expressed
by well-known distributional families owing to the mixed-scale variables.

For datasets with mixed continuous and discrete variables in various study areas,
multiple imputation by chained equation (MICE), in whichmissing variables are itera-
tively imputed based on full conditional specification (FCS), has been cited numerous
times by researchers from several fields includingmedical statistics (van Buuren 2007;
White et al. 2011; Paton et al. 2014). This is because the researchers, especially the
imputers, are not required to construct an explicit joint multivariate model with mixed-
scale variables (continuous, categorical, ordinal, and so on). More specifically, the
MICE-FCS approach specifies a multivariate imputation model using a sequence of
seemingly “appropriate” univariate regression models corresponding to the types of
missing variables; namely, one only needs to assign a univariate linear regression with
a normally distributed error term for an incomplete continuous variable, a logistic
regression for an incomplete binary variable, an ordered logistic regression for an
incomplete ordinal variable, and so on. Moreover, researchers can easily implement
MICE-FCS using several existing statistical software packages, such as themice pack-
age in R and S-plus, proc mi with the FCS option in SAS, and mi impute in STATA.

In spite of the widespread use of MICE-FCS, recent studies showed that it leads
to severely biased estimates in various setups. Liu et al. (2014) proved that using
MICE-FCS does not guarantee that the asymptotic distribution is equivalent with
the existing Bayesian MI estimator when the families of the conditional models are
“incompatible” [see Section 4 in Liu et al. (2014)]. If the parameters of the conditional
distribution cannot be represented by the parameters of the joint distribution, the
conditional models are said to be incompatible. In fact, simulation studies by Bartlett
et al. (2015) showed that MICE yields biased estimates when treating incompatible
conditional models. Unfortunately, violation of the compatibility assumption is not
uncommon (the example of the violation of the compatibility assumption is provided
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Semiparametric Bayesian multiple imputation for regression models 805

in Sect. 2.1). Therefore, although MICE-FCS is simple and convenient to use, it can
provide statistically valid estimates in very limited cases.

1.1 Motivating example

We briefly introduce a motivating example of a real-world dataset in which it is
very hard to properly impute the missing components using FCS approach. The data
used in this article were obtained from the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as a
public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The
primary goal of ADNI has been to test whether serial magnetic resonance imaging
(MRI), positron emission tomography (PET), other biological markers, and clinical
and neuropsychological assessment can be combined to measure the progression of
mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). For up-to-date
information, see http://www.adni-info.org.

Jack et al. (2010) used data from the ANDI to study baseline predictors that
contribute to the progression of AD. Figure 1 shows the distributions of amyloid
β1−42(ABET A1−42), tau (total tau protein), and p-tau (phosphorylated tau protein;
P-tau181p) of MCI at baseline subjects, and Jack et al. (2010) show that they are
associated with time to conversion to AD. Since the participants were not forced to
contribute to the CSF (cerebrospinal fluid) measurement, around 50% of the data
for ABET A1−42, tau, and p-tau are missing. Jack et al. (2010) employed the Cox
proportional hazards model, in which the covariates include ABET A1−42, tau, and
p-tau. The analysis was restricted to 218 samples whose ABET A1−42 were available;
nevertheless, the dataset contains approximately 400 subjects. If the researchers try
to address the missing components using the MI method, EM algorithm, or Bayesian
estimation with the MCMC technique, they must correctly specify the complex joint
distribution of the covariates.

Figure 1 shows that they are not normally distributed and seem to be skewed, follow-
ing a fat-tailed distribution. Accordingly, specifying the covariate distribution seems

Fig. 1 Histograms of observed ABET A1−42 (Amyloid beta 1–42), tau (total tau protein), and p-tau (phos-
phorylated tau protein). The bold lines represent the kernel densities of the data
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to be very difficult in such cases. Bartlett et al. (2015) employed the SMC-FCS (sub-
stantive model compatible—fully conditional specification) approach to impute the
missing covariates and estimated the Cox regression. They added information pertain-
ing to the family history of Alzheimer’s patients, namely whether the subject’s father
and mother had AD or not. However, their results seem to be biased owing to the vio-
lation of the model compatibility assumption required by the FCS approaches; several
covariates do not follow normal distributions, as seen from Fig. 1. Also, more than
two binary missing covariates are employed. As shown in Sect. 2, the FCS approaches
result in biased estimates when missing covariates include two or more binary vari-
ables because of the model incompatibility. Therefore, it is evident that the existing
FCS approaches should not be applied to these kinds of datasets, which are often found
in the real world.

1.2 New contribution

In this paper, we propose a new flexible semiparametric Bayesian framework for MI,
which is capable of treating mixed-scale incomplete variables. The model formulation
is different from that seen in the existing literature in two ways.

First, we express the full model as the product of the covariate distribution (con-
ditional distribution of incompletely observed covariates given completely observed
covariates) and the substantive model (the regression model researchers are interested
in). We assume the parametric model to the substantive model since the researchers
conducting applied research are generally concerned with the parameters of the func-
tions in the substantive model, which should be built upon the existing theories or
the previous literature in the field of study. Examples of the parametric substantive
model are the Cox regression and the logistic regression in epidemiological and clin-
ical research. On the other hand, with regard to the covariate distribution, we specify
a joint distribution of the missing variables using the probit stick-breaking process
mixture (PSBPM) model proposed by Chung and Dunson (2009), whose model spec-
ification is based on the Dirichlet process mixture (DPM) model. Ibrahim et al. (2005)
also pointed out that one of the caveats of treating missing covariates lies in specifying
the parametric model of the covariate distribution. However, it is nearly impossible to
correctly prespecify the covariate distribution based on existing theories or some infer-
ences, because the relationships of the missing variable and the complete variables
are often “multivariate-to-multivariate,” they can be nonlinear relationships, or they
may be non-normally distributed. Therefore, we employ the nonparametric Bayesian
specification; specifically, we use PSBPM modeling instead of DPM since the stick-
breaking weights can vary depending on the predictors. Since our approach does
not rely on FCS approach, we do not have to consider the compatibility assumption
holding.

Second, we express mixed-scale variables through the transformation of the
latent continuous variables for probit modeling. This underlying continuous variables
approach is used in the context of the DPMmodel, as in Kottas et al. (2005) for ordinal
variables; in Canale and Dunson (2011) for count variables; and in Kim and Ratchford
(2013) for ordinal variables. This approach enables us to deal in a straightforwardman-
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ner with many types of variables in the joint covariate distribution without specifying
the complicated conditional joint distribution of mixed-scale variables.

Semiparametric model development is also motivated by the previous frequen-
tist works about semiparametric model for missing variables. For example, Robins
et al. (1995) developed semiparametric efficient regression model where conditional
distribution of missing covariates can be nonparametric. Lawless et al. (1999) pro-
posed semiparametric likelihood-based model when missingness only depends on a
stratification in parametric regression model. Zhang and Rockette (2006) proposed
semiparametric maximum likelihood inference with missing covariates, where while
they assume parametric regression model, marginal distribution of the covariates can
be nonparametric. These frequentist methods assume the substantive regressionmodel
to be parametric, and other distributions, such as missing probability or marginal dis-
tribution of covariates, are nonparametric. Good statistical property and usefulness
toward the real data of semiparametric model are implied by these studies.

One of the Bayesian-related works to our research is Murray and Reiter (2016),
which developed fully nonparametric multiple imputation methods for mixed-scale
variable (hereafter, NP-MI). They consider Rubin (1987)’s-type multiple imputation,
that is, “two step” procedure of imputation stage and analysis stage with Rubin’s rules.
Multiple imputation approaches likeMurray andReiter (2016) (as well asMICE-FCS)
requires strong condition that the analysis model is congenial to the imputation model
in order to be proper multiple imputation (Meng 1994). In addition, proper multiple
imputation should satisfy self-efficiency condition to correctly estimate the variance
of interested parameter with Rubin’s rules. On the contrary, our model incorporates
substantivemodel of interest such as proportional hazard or logistic regressionmodels,
and is different from uncongenial multiple imputation. Therefore, we can obtain better
estimates even when the regression model of interest is thought to be uncongenial.
As Murray and Reiter (2016) states, theoretically evaluating whether the substantive
regression model (analysis model) is congenial to their nonparametric imputation
model is generally difficult. However, the simulation studies below, in fact, show that
their method resulted in about 2–60 times larger MSE compared with our proposed
method even in the case of very simple proportional hazard or logistic regression
models.

1.3 Organization

The rest of the paper is organized as follows. In the next section, we propose and
formulate a semiparametric Bayesian multiple imputation (SB-MI) algorithm that can
overcome the drawbacks of the existing methods. In Sect. 3, we describe the model
specification, imputation procedure and posterior computation of the proposed model
in detail. The simulation studies illustrating the performance of the proposed method
compared with the MICE-FCS, SMC-FCS, NP-MI, and missForest approaches are
presented in Sect. 4. In Sect. 5, we apply our proposed method to the real dataset
described in the motivating example in Sect. 1.1. Section 6 concludes after provid-
ing a short discussion. The detailed descriptions of the simulation design and some
additional analysis appear in the Appendix of ESM.
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2 Model setup

In this paper, we consider a dataset consisting of N (i = 1, . . . , N ) cases, where
the interest of the researchers lies in a model with outcomes y : j × 1, completely
observed covariates v : p × 1, and incompletely observed covariates w : q × 1. We
consider the case where some components of y can be missing. Let r be the vector
of observation indicators whose element equals 1 if the corresponding element of the
dataset is observed and 0 otherwise. Throughout this paper, we consider that the data
areMAR. To bemore precise, if y hasmissing components, we assume p(r|y,w, v) =
p(r|v). Otherwise if y is completely observed, p(r|y,w, v) = p(r|y, v) is assumed.
Additionally, we assume that all the observations are independent and identically
distributed.

Let ϑ s be the parameter vectors of the substantive model p(y|w, v,ϑ s). Note that
the researcher’s prime target of inference lies in ϑ s, even in the context of missing
data analysis. We propose a SB-MI algorithm expressed by the following imputation
model as the product of two submodels:

p(y,w|v, ϑ s,ϑm) = p(y|w, v,ϑ s)p(w|v,ϑm) (1)

where p(w|v,ϑm) represents the covariate distribution with parameters of lower inter-
est ϑm, and p(y|w, v,ϑ s) represents the substantive model with parameters of higher
interest ϑ s . We assume the parametric model for the substantive model p(y|w, v,ϑ s)

since the researchers’ concern generally lies in the parameters of the substantivemodel
ϑ s . Additionally, the substantive model should be built upon the existing knowledge
corresponding to the purpose of the study. Accordingly, the researcher may assume a
linear regression with an interaction term, a Cox regression, or a logistic regression
for p(y|w, v,ϑ s). While we assume a parametric structure for the substantive model,
we do consider Bayesian nonparametric form rather than a parametric form for the
covariate distribution p(w|v,ϑm), because researchers generally have no interest in
ϑm and parametric modeling of a large number of covariates can result in misspec-
ification bias (Chib 2007). Moreover, we express mixed-scale variables through the
transformation of latent continuous variables for probit modeling in order to deal with
many types of continuous and discrete variables in the joint covariate distribution in
a straightforward manner. This transformation enables us to avoid considering the
compatibility assumption, which is required in MICE-FCS or SMC-FCS.

2.1 Existingmethod

In this situation, ϑ s can be estimated by the existing MI methodology, EM algorithm,
or Bayesian MCMC estimation. For example, MI uses the MCMC approach, and
researchers iteratively draw the parameter of the joint model ψ from p(ψ |a), and
then draw amis from p(amis|aobs,ψ) D times, where aobs and amis are the observed
and missing subsets of variable in the dataset, respectively. However, as is the case
with the maximum likelihood estimation of the EM algorithm or the BayesianMCMC
estimation, it is difficult to correctly specify the joint distribution of all the variables
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that have missing elements p(amis|aobs,ψ), especially when both continuous and
discrete variables are missing.

The MICE-FCS method has become a more widely used methodology as
researchers seek to avoid the difficulty in specifying the conditional joint distri-
bution p(amis|aobs,ψ). The MICE-FCS approach specifies a multivariate covariate
distribution by a sequence of univariate regressions for each missing variable.
More specifically, MICE-FCS iterates drawing ψ j from p(ψ j |a) and amis from
p(amis

j |amis− j , a
obs,ψ j ) for each amis

j , where a− j , denoting the components of a with
a j removed. Because of the simplicity of its covariate distribution specification,MICE
is popularly used to deal with missing data.

In spite of the widespread use of MICE-FCS due to its convenience, it was recently
proved that the asymptotic distribution drawn using MICE-FCS is not equivalent to
the existing Bayesian simulation in several settings. Liu et al. (2014) showed that
the MICE-FCS algorithm does not guarantee that the asymptotic distributions are
consistent with the existing Bayesian joint model MI estimator when the family
of conditional models and their joint distributions are incompatible. According to
Liu et al. (2014), the compatibility assumption is satisfied when a parameter set of
conditional models f j (amis

j |amis− j , a
obs,ψ j ) is represented by surjective mapping of a

collection of the joint model p(amis, aobs|ψ) parameter ψ , that is, g j (ψ) = ψ j , and
hence, p(amis

j |amis− j , a
obs,ψ) = f j (amis

j |amis− j , a
obs,ψ j ); otherwise, they are said to be

incompatible. Put simply, compatibility purports that the parameters of the conditional
distribution can be expressed by the parameters of the joint distribution of the model.
Liu et al. (2014) also showed that the MICE-FCS algorithm generates a consistent
estimator using Rubin’s rules, but the variance of the parameters cannot be applied to
Rubin’s rules if the family of the conditional models is semicompatible as a special
case of incompatibility. On the other hand, if the model is compatible, MICE-FCS is
asymptotically equivalent to the existing Bayesian simulation; hence, one can apply
Rubin’s rule to calculate the mean and variance of the parameters of interest.

In what kinds of cases this compatibility assumption holds? If the all variables
in the datasets are consist only of continuous variables that follow an i.i.d. multi-
variate normal distribution and the conditional models are linear regressions with
normally distributed error terms, the conditionals and joint model are compatible, and
the estimators of MICE-FCS are applicable to Rubin’s rules. If one variable is binary
variable and the rest are continuous, one can also apply Rubin’s rules to the sub-
stantive model described in the form of a linear regression with normally distributed
error terms. However, when the researcher is interested in binary outcome modeling
with a logistic regression, wherein there exist binary covariates in the datasets, and
even if all the other covariates are continuous, the conditionals and substantive model
(logistic model specification) are incompatible, and the MICE-FCS estimators are not
equivalent to those corresponding to Gibbs sampling. In epidemiological and clinical
research, researchers often assume nonlinear models such as the Cox proportional
hazards model, regression models with quadratic terms, or regression models with
interaction terms. Yet, unfortunately, these are examples of model incompatibility.
In addition, the conditionals of MICE-FCS are under the immediate control of the
researcher, and hence, the joint distribution is only implicitly known and may not
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exist (van Buuren 2012). Therefore, although MICE-FCS is simple and convenient,
the estimators are valid in a very limited number of cases only.

Bartlett et al. (2015) recently developed SMC-FCS in order to relax the compati-
bility assumption, which assigns the imputer compatibility of the joint distribution of
covariates only and not all the variables. However, it has hardly solved the problem
of the compatibility assumption holding because the number of covariates is gener-
ally larger than the outcome variable. For example, if the missing covariates contain
two or more binary variables, a parameter set of conditional models cannot be repre-
sented by onto mapping of a collection of joint model parameters. Hence, the model
compatibility assumption among covariates is violated, and the estimates from the
SMC-FCS do not guarantee the consistency. Additionally, if some covariates do not
follow a normal or Bernoulli distribution (say, they follow a log-normal distribution or
a mixture of normal distributions), the compatibility assumption of joint distribution
among covariates required in the SMC-FCS method cannot be generally satisfied, as
seen in the motivating example in Sect. 1.1.

3 Semiparametric Bayes multiple imputation

3.1 Semiparametric model formulation

As stated in Eq. (1), we propose a SB-MI algorithm, expressed by imputation model
p(y,w|v) as the product of two submodels p(y|w, v,ϑ s)p(w|v,ϑm). Assuming the
independence of the priors p(ϑm) and p(ϑ s), the posteriors are

p(ϑm,ϑ s |y, v,w) ∝ p(ϑm)p(ϑ s)p(y|w, v,ϑ s)p(w|v,ϑm)

ϑm and ϑ s can be drawn from p(ϑm)p(w|v,ϑm) and p(ϑ s)p(y|w, v,ϑ s), respec-
tively. Given these parameters, the missing values are drawn from the density
proportional to p(y,w|v).

The specification of the substantivemodel p(y|w, v,ϑ s)varies by the purpose of the
analysis and the properties of the outcome y. One may specify the linear regression to
the continuous outcome or the logistic regression to the discrete outcome. Besides, one
must employ specified model forms on p(y|w, v,ϑ s) , such as the Cox proportional
hazards model or quadratic models. Our proposed methodology, in any case, can
properly estimate ϑ s even when MICE-FCS or SMC-FCS cannot because of model
incompatibility.

3.2 Covariate distribution

On the other hand, we have to specify the complicated covariate distribution
p(w|v,ϑm). Usually, w will include continuous and discrete variables. In order to
deal with mixed-scale covariates, we employ a transformation of the latent continuous
variables for probit modeling. Thus, we rewrite w as w = (wc,wd ,wn) where wc

denotes the continuous variable component, wd denotes the ordered variable com-
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ponent with Qd(= 1, . . . , qd , . . . , Qd) orders, and wn denotes the nominal variable
component with Qn(= 0, . . . , qn, . . . , Qn) choices. To deal with discrete variables
simply, we introduce continuous latent variables ud and un where

wd = qd if ζqd−1 < ud ≤ ζqd

wn =
{
0 if max (un) < 0
qn if max (un) = unqn > 0

.

We assume the following structure on the covariate distribution.

w∗
i = f (vi ) + ηi

with wi = g(w∗
i ), where f is an unknown function, ηi is q-dimensional i.i.d. random

errors with E(ηi ) = 0,w∗ = (wc,ud ,un), and g(·) represents the function converting
the latent continuous variables w∗

i to wi . This enables us to deal with many types of
continuous and discrete variables in the covariate distribution in a straightforward
manner.

More concretely, we employ DPMmodeling to represent the covariate distribution.
DPMmodeling is frequently utilized in applied statistical modeling when researchers
intend to avoid making assumptions about parameter distribution within the Bayesian
framework. For example, Hirano (2002) developed autoregressive models with indi-
vidual effects where the disturbances are not restricted to a parametric class. Rodriuez
et al. (2009) used DPM to develop a Bayesian semiparametric approach for functional
data analysis. Kunihama et al. (2016) developed a nonparametric Bayes model with
DPM to incorporate sample survey weights. The theoretical properties of DPM were
investigated by Shen et al. (2013).

According to Sethuraman (1994), the Dirichlet process as a prior for a random
distribution G can be represented by the stick-breaking process. Let ξ1, ξ2, . . . be
an independent draw from a beta distribution Be(1, γ ). If G follows the Dirichlet
process prior with concentration parameter γ and base distribution G0, that is, G ∼
DP(γ,G0), G can be represented as

G =
∞∑
l=1

κlδθl , θl ∼ G0

where κl = ξl
∏

h<l (1 − ξh) and δθ is a point mass at θ [refer to Walker et al. (1999)
for a detailed description of DPM].

Although DPM is used to flexibly express a variety of parameters or distributions,
they are greatly restricted because probability weight κl is a constant (Dunson et al.
2007). If the stick-breaking weights πl are constant and independent of predictor xi ,
as in DPM and other nonparametric Bayesian models, the mean regression structure

is reduced to a linear one, namely
∑∞

l=1 πlβ
T
l xi = β

T
xi , where β = (∑∞

l=1 πlβ
T
l

)
.

Therefore, in this paper, we apply the PSBPMmodel proposed by Chung and Dunson
(2009) since the algorithm allows for greater flexibility through predictor-dependent
stick-breakingweightsπl (xi ). In addition, PSBPMresults in a conjugate structure, and
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hence simpler posterior calculation. The statistical properties of PSBPM are described
in Pati et al. (2013). For example, Hoshino (2013) proposed a semiparametric Bayesian
model for causal inference where the parameters of no interest for researchers are
modeled using PSBPM.

We apply PSBPMmodeling to the covariate distribution specification. The resulting
regression function of w∗ on v can be represented as

f (w∗
i |vi ) =

∞∑
l=1

πl(v)N (�lvi ,�l)

with the probability weights

πl(v) = Φ(ξ l(v))
∏

h<l

{
1 − Φ(ξ h(v))

}
,

whereΦ(·) is the cumulative distribution function of the standard normal distribution.
Tomake the probabilityweightsπl(v) varywith covariates v, we let ξ l(v) = αl+ fl(v),
αl ∼ N (μα, 1),μα ∼ N (μα0 , σ

2
α0

) andwe introduce the following regression function
as in Chung and Dunson (2009):

fl(v) = −
q∑

k=1

ψlk |vk − Ωlk |

with ψlk ∼ N (μψk , σ
2
ψk

)1R+ ,Ωlk ∼ ∑Mk
m=1

1
Mk

δΩ∗
km

(Ωlk), where N (μU, σ 2
U)1U

denotes a normal distribution with mean μU and variance σ 2
U truncated to the set

U and Ω∗
km are discrete points over a reasonable range of the k-th covariate vk .

3.3 Imputation and analysis procedure

Data imputation and analysis procedures are as follows.

1. Impute missing component of y and w if missing as starting values.
2. Assign each case i to any class l of the Dirichlet mixture.
3. Generate ϑ

(t)
m from the posterior distribution based on the likelihood of

p(w(t−1)|v,ϑm) calculated on the complete case dataset or pseudo-complete
dataset.

4. If w is missing, generate the missing component of w proportional to
p(y(t−1),w|v,ϑ (t−1)

s ,ϑ
(t)
m ).

5. If y is missing, generate the missing component of y from p(y|w(t), v,ϑ (t−1)
s ). If

case i has missingness both on wi and yi , generate yi from p(y|w(t), v,ϑ (t−1)
s ),

where missing w(t)
i is imputed in step 3.

6. Given the pseudo-complete dataset, generate ϑ
(t)
s from the posterior distribution

based on the likelihood of p(y(t)|w(t), v,ϑ s).
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Steps 2–6 are repeated for t = 1, 2, . . . until convergence. Then, the sequence of
ϑ

(t)
s obtained in Step 6 is used to the posterior inference of the substantive model.
The starting values in Step 1 can be imputed based on single imputation such as

mean imputation or regression imputation using complete case.

3.4 Posterior computation of the proposedmodel

LetKi be the indicator denoting where case i belongs, andKi = l if case i belongs to
class l. Recall that ϑm and ϑ s are the parameter vectors for the covariate distribution
p(w|v) and the substantive model p(y|w, v), respectively. This yields the following
hierarchical representation of the finite-dimensional PSBPM model:

yi |wi , vi ,ϑ s ∼ p (yi |wi , vi ,ϑ s) ,

wi |vi ,ϑm,Ki ∼ p (wi |vi ,ϑm,Ki ) ,

K|φ ∼
∞∑
l=1

πl(vi |φl)δl (·) (i = 1, . . . , N ),

φ∗ ∼ p
(
φ∗|τφ

)
,

ϑ s ∼ p
(
ϑ s |τϑs

)
,ϑm ∼ p

(
ϑm |τϑm

)
,

τ ∼ p(τ ),

where φ∗ = (
αl , φ11, . . . , φLq ,Ω11, . . . ,ΩLq

)
and τ = (τ T

φ , τ T
ϑs

, τ T
ϑm

)T .
The blocked Gibbs sampler (Ishwaran and James 2001) is applied to the posterior

computation of the PSBPMparameters ϑm . The blocked Gibbs sampler is very similar
to the Gibbs sampler except for the assignment of samples to each class. Since we
employ PSBPM modeling, we can directly apply the estimation algorithm of Chung
and Dunson (2009) for the simulation of ϑm . Each case i is assigned to one of the
L classes in the blocked Gibbs sampling, where L denotes the maximum number
or truncation of classes. As stated above, w may include continuous and discrete
variables. We employ the transformation of the latent continuous variables w∗ for
probit modeling through a function g such that w = g(w∗). Given the draw of ϑm

, the missing components of y and w are imputed, and then, the substantive model
parameter ϑ s is simulated. We obtain the detailed posterior computation using the
MCMC estimation as follows.

1. Update Ki (i = 1, . . . , N )

To assign samples to each class, generate Ki by
∑L

l=1 πliδl (·), where πli is

πli = πl(vi )N (�lvi ,�l)∑L
l=1 πl(vi )N (�lvi ,�l)

with πl(vi ) = �(ξ l(vi ))
∏

h<l

{
1 − �(ξh(vi ))

}
.
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2. Update Z∗
il

We introduce latent variable Z∗
il where Zil = 1(Z∗

il > 0) and

Z∗
il ∼

⎧⎪⎪⎨
⎪⎪⎩

N

(
αl −

q∑
k=1

ψlk |vik − Ωlk | , 1
)
1R+ for l = Ki

N

(
αl −

q∑
k=1

ψlk |vik − Ωlk | , 1
)
1R− for l < Ki .

3. Update αl(l = 1, . . . , L − 1)
Draw αl from the following normal distribution.

αl ∼ N

(∑
i :Ki≥l W

∗
il + μυ

Nl + 1
,

1

Nl + 1

)
,

where Nl = ∑N
i=1 1(Ki ≥ l) and W ∗

il = Z∗
il + ∑q

k=1 ψlk |vik − Ωlk |.
4. Update ψlk(l = 1, . . . , L − 1, k = 1, . . . , q)

Draw ψlk from the following left-truncated normal distribution.

ψlk∼N

(
σ 2

ψk
μψk + ∑

i :Ki≥l |vik − Ωlk |U∗
il

σ 2
ψk

+ ∑
i :Ki≥l |vik − Ωlk |2

,
1

σ 2
ψk

+ ∑
i :Ki≥l |vik − Ωlk |2

)
1R+ ,

where U∗
il = αl − Z∗

il − ∑q
s=1,s �=k ψls |vis − Ωls |.

5. Update Ωlk(l = 1, . . . , L − 1, k = 1, . . . , q)

Draw Ωlk from the following probability.

Pr
(
Ωlk = Ω∗

km

)

=
1
Mk

∏
i :Ki≥l N

(
Z∗
il ; αl − ∑q

s=1,s �=k ψls |vis − Ωls | − ψlk
∣∣vik − Ω∗

km

∣∣ , 1)
∑Mk

m=1
1
Mk

∏
i :Ki≥l N

(
Z∗
il ; αl − ∑q

s=1,s �=k ψls |vis − Ωls | − ψlk
∣∣vik − Ω∗

km

∣∣ , 1) .

6. Update ϑm(= �l ,�l)

Draw ϑm(= �l ,�l) from the following multivariate normal and inverted Wishart
distribution.

�l |rest ∼ N

(
vec(�̂),�l ⊗

(
VT
l Vl

)−1
)

,

�l |rest ∼ IW
(
f0 + N ,G−1

0 + (W∗
l − �lVl)

T (W∗
l − �lVl)

)
,

where �̂ = (
VT
l Vl

)−1
VT
l Wl , V = (

vT1 , . . . , vTN
)T

, W∗ = (
w∗T
1 , . . . ,w∗T

N

)T
,

and Vl and W∗
l denote the subset of V and W∗ whose case i belong to class l. f0

andG−1
0 denotes the parameter of the prior distribution of�l; �l ∼ IW ( f0,G

−1
0 ).
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7. Update μα

Draw μα from the following normal distribution

μα ∼ N

(
(L − 1 + σ−2

α0
)−1

[
L−1∑
l=1

αl + σ−2
α0

μα0

]
, (L − 1 + σ−2

α0
)−1

)
.

8. Update the missing components
Draw the missing component of w from a density proportional to
p(y,w|v, ϑ s,ϑm). Since it is difficult to draw the missing w, we employ the
Metropolis–Hastings algorithm and use p(w|v,ϑm) as a proposal density in order
to draw a candidate ofwi ,wc

i . Note that the candidates are obtained after the trans-
formation w = g(w∗). We accept the candidates with the following probability:

min

(
p(y|wc, v,ϑ s)

p(y|w, v,ϑ s)
, 1

)
. (2)

If any component of y is missing, we draw ymis from

p(ymis|w, v,ϑ s)

9. Update ϑ s

Draw ϑ s from the density proportional to

p(ϑ s)

N∏
i=1

p(yi |wi , vi ,ϑ s).

For example, if we are interested in inferring the binary logistic regression coeffi-
cients, the acceptance probability in Eq. (2) can be written as

min

({
exp(�T xci )/

[
1 + exp(�T xci )

]}yi {
1/

[
1 + exp(�T xci )

]}1−yi

{
exp(�T xi )/

[
1 + exp(�T xi )

]}yi {
1/

[
1 + exp(�T xi )

]}1−yi
, 1

)

where � is a vector of coefficients, xi = (
wT
i , vTi

)T
, and xci is the vector xi whose

missing components are replaced by the candidate value.
In addition to the above steps, if any w is ordered variable, cutting points ζqd must

be estimated. We can employ Bayesian-ordered probit MCMCmethod such as Albert
and Chib (1993) or Albert and Chib (2001) before Step 8. Furthermore, we have to
make some restriction on �l when w includes categorical variables. The diagonal
elements of �l corresponding to ud and one of unqn (e.g., unqN ) are restricted to be 1.
We can employ many kinds of methods to generate �l such as McCulloch and Rossi
(1994) or Zhang et al. (2008).
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4 Simulation study

We conduct the following four simulation studies in order to illustrate the perfor-
mance of the proposed method when MICE-FCS cannot draw from a Bayesian joint
model: (i) linear regression with a quadratic term, (ii) linear regression with an inter-
action term, (iii) proportional hazards model with a binary covariate, and (iv) logistic
regression with a binary covariate. Through the simulation study, we consider the case
N = 400, and 30% of the incomplete covariates are set to be missing. We gener-
ate the missing values based on p(r|y,w, v) = p(r|y). We compare the following
imputation methods with SB-MI: MICE-FCS, SMC-FCS, NP-MI, and missForest.
Stekhoven and Buhlmann (2012) proposed the missForest algorithm, which imputes
missing values from the random forest predictors and they are reported to provide
lower imputation errors than the FCS method (Liao et al. 2014; Waljee et al. 2013).
The detailed simulation design, results, and detailed discussion appear in Appendix
of ESM.

This section summarizes the results of simulation study (iv). We specify the sub-
stantive model of the logistic function as follows:

logi t(y = 1) = �0 + �1w1 + �2w2 + �3v

with �0 = 1, �1 = 2, �2 = −2, and �3 = 3. In this simulation, we consider three
scenarios where the missing covariates follow (a) a multivariate normal distribution,
(b) a multivariate log-normal distribution, and (c) a multivariate normal mixture dis-
tribution. We consider a case where one of the incompletely observed covariates w1
is binary, where wi,1 = 1 if the latent variable, which is simulated based on the above
three process, w∗

i,1 > 0 and wi,1 = 0 if the latent variable w∗
i,1 ≤ 0. The detailed data

generating process is described in Appendix of ESM.
Table 1 describes the results of the simulation, including the empirical mean, stan-

dard deviation, the coverage of nominal 95%confidence intervals (CIs) of the estimate,
and the mean squared error (MSE) from the true value of �. The last row for each
scenario shows each sum of the MSE ratio for MICE-FCS. With Scenario (a), namely
the normally distributed covariates, SB-MI gives the most accurate estimates, with
an empirical CI coverage of approximately 0.95. However, MICE-FCS, SMC-FCS,
NP-MI, and missForest result in biased estimates, and their CI coverage are also
considerably poor. With Scenario (b), namely the log-normally distributed missing
covariates, MICE-FCS and SMC-FCS continue to be biased with incorrect empirical
CI coverage. missForest provides relatively good estimates in terms ofMSE, but, once
again, the CIs are poor. SB-MI gives relatively correct estimates, with the CI cover-
age closer to 0.95 compared with MICE-FCS, SMC-FCS, NP-MI, and missForest.
In Scenario (c), namely the mixture of normally distributed covariates, MICE-FCS,
SMC-FCS, NP-MI, and missForest once again result in biased estimates, and end with
poor empirical CI coverage for some �s. On the other hand, MSE of SB-MI provides
the best result among the three, and the CI coverage are very close to 0.95 for all �s.
For all three scenarios, MICE-FCS and NP-MI provide very similar and biased results
since both are thought to be uncongenial multiple imputation method.
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Fig. 2 The thinner lines with markers and the thicker lines correspond to the left vertical axis (MSE)
and the right vertical axis (Cov), respectively. The solid, dashed, and dotted lines represent the results
of the following scenarios, respectively: (a) multivariate normal distribution, (b) multivariate log-normal
distribution, and (c) multivariate normal mixture distribution. CC, complete case analysis; MICE-FCS,
multiple imputation by chained equation—fully conditional specification; SMC-FCS, substantive model
compatible—fully conditional specification; SB-MI, semiparametric Bayes multiple imputation (proposed
method)

Figure 2 compares the results of MSE and the coverage of nominal 95% CIs. We
observe that the proposed method gives the smallest MSE and the best coverage.

For the other three simulations, the summarized main results are as follows. First,
in terms of the MSE, the proposed method gives estimates equivalent to those found
with SMC-FCS when the latter gives consistent estimates, but MICE-FCS results
in biased estimates because of the violation of the model compatibility assumption.
NP-MI also gives biased results which are very similar to MICE-FCS. This indicates
that nonparametric imputation stage is uncongenial to the analysis models that we
assumed. The coverage of nominal 95% CIs for the proposed method is very close to
that of SMC-FCS. Note that missForest shows unbiased estimates in some situations,
but produces underestimated standard deviations, and hence, poor CIs. This indicates
that missForest is occasionally good at inferring unbiased estimates, but it should not
be applied in fields such as medical or epidemiological research, where the results of
statistical significance (or hypothesis testing) are crucial.

Second, the proposed method shows smaller MSEs when the model compatibility
assumptions of FCS approaches (MICE-FCS and SMC-FCS) are not satisfied. Our
simulation study includes the missing covariate that follows a log-normal or mixture
of normal distribution. Although MICE-FCS and SMC-FCS result in larger MSEs
in these simulation settings, our proposed method gives considerably smaller MSEs.
Even in these situations, the coverage of the CIs is better compared to that under the
imputation methods. NP-MI (as well as MICE-FCS) also provides very large MSE
compared with the proposed since the analysis model such as simple proportional
hazards model is thought to be uncongenial to the imputation model.
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These results indicate that the proposed method can deal with more complicated
covariate distributions that the researcher cannot prespecify. Therefore, these results
suggest that SB-MI approach is very practical for treating missing datasets in the real
world.

5 Real data analysis

In this section, we apply our proposed algorithm to the real dataset with missing
components. The data used in this implementation are sourced from the ADNI dataset
described in themotivating example in Sect. 1.1. The substantivemodel in this example
is the Cox proportional hazards model, which helps us study the time to conversion
to AD. The samples comprise 382 observations of MCI in baseline subjects who
had at least one follow-up after the first diagnosis. Of these subjects, 167 partici-
pants converted to AD during the data period. The dataset contains missing covariates
ABET A1−42, the square of ABET A1−42, tau, p-tau, the dummy variable of whether
or not the subject’s mother had AD, and the dummy variable of whether or not the
subject’s father had AD. The dataset also contains the completely observed dummy
variable APOE4, which equals 1 if the subject has the APOE4 gene, and 0 otherwise.
Jack et al. (2010) found evidence that ABET A1−42 is positively associated, p-tau
is positively associated after controlling the effect of tau, and APOE4 is positively
associated with the hazard of converting to AD. Bartlett et al. (2015) showed that
contrary to expectations, “mother had AD” and “father had AD” are negatively asso-
ciated with the hazard of converting to AD. We should note that ABET A1−42 of 190
observations, tau of 193 observations, p-tau of 189 observations, “mother had ADll
of 77 observations, and “father had AD” of 93 observations are missing.

We employ a gamma process prior to the cumulative baseline hazard proposed by
Kalbfleisch (1978), namely H0 ∼ GP(c0H∗, c0). We specify the hyperparameters
to be c0 = 0.01, and H∗ follows an exponential distribution with parameter λ. Note
that Kalbfleisch (1978) and Sinha et al. (2003) showed that the estimates from the
gamma process prior to the cumulative baseline hazard are equivalent to the non-
Bayesian estimates based on Cox’s partial likelihood (Cox 1975) when c0 → 0 [see
Chen et al. (2006) for a detailed description of the MCMC method for a Bayesian
Cox regression]. We draw 25,000 MCMC iterations after 25,000 burn-in phases. We
confirmed the convergence using a diagnostic proposed by Geweke (1992).

Table 2 shows the results of the coefficients estimated using the Cox proportional
hazards model. A positive coefficient indicates that the variable is associated with
hazard of the subject converting to AD. We compare these results with those obtained
using the other imputation methods, namely MICE-FCS, SMC-FCS, NP-MI, and
missForest. Note that the results of MICE-FCS and SMC-FCS can be biased because
the model compatibility assumption is violated, as noted in Sect. 2. NP-MI, as well
as MICE-FCS, can also be biased due to the uncongeniality as indicated from the
simulation. The estimated results of our proposed method (SB-MI) are different from
those of MICE-FCS, SMC-FCS, NP-MI, missForest, as well as the complete case
analysis in some ways. The results of SB-MI suggest that the effect of increasing
ABET A1−42 to the hazard of conversion is nonlinear as in Bartlett et al. (2015),
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whereas the coefficient of ABET A1−42 is not statistically significant for the estimates
of the complete case samples, MICE-FCS, SMC-FCS, NP-MI, and missForest at the
5% level. The coefficients of ABET A1−42 and (ABET A1−42)

2 from MICE-FCS
are statistically significant at the 10% and 5% level, respectively, but they show signs
opposite to those of SB-MI. In addition, the estimated coefficient of p-tau from SB-MI
is much larger and closer to that of the complete case analysis compared to the other
methods. Like the other existing methods, the hazard of the presence of parents who
had AD is not statistically significant. The presence of the APOE4 gene, which is
suspected to be associated with the development of AD, is positively associated with
the hazard of converting to AD for SB-MI. This relationship cannot be found when we
use complete case samples only. In addition, comparedwith the complete case analysis,
several coefficients from SB-MI are statistically significant because they avoid the
restrictions posed by the complete case sample. We conduct a logistic regression and
find that data availability of each biomarker is not related to time to conversion toAD at
the 1% level, which suggests that the missing data do not depend on the outcome, and
assuming unbiased results from the complete case analysis is reasonable. However, the
analysis based on the restricted sample fails to detect statistically significant variables
related to the hazard of converting to AD.

On the other hand, the results from SB-MI are consistent with the findings of the
previous studies, such as Hansson et al. (2006) and Okello et al. (2009), in terms of
their signs. These studies employed separate longitudinal datasets and not the ADNI
dataset. In conclusion, our method is very practical when applied to a real dataset,
which often contains non-normally distributed and mixed-scale missing variables.

6 Discussion and conclusions

In this study,we proposed a SB-MI approach for regressionmodelswithmissingmixed
continuous and discrete covariates, in which the substantive model of the researcher’s
interest is a parametric formulation, and the covariate distributions are nonparametric
formulations employing PSBPM modeling.

If the covariate model can be correctly specified, the EM algorithm or Bayesian
MCMC approach can estimate unbiased results. However, prespecifying a covariate
distribution is generally impossible, especially in cases where the missing variables
are continuous and discrete. The FCS approach including MICE and SMC has been
widely used because researchers are not required to specify the covariate distribution
amongmixed-scale variables. However, these methods yield severely biased estimates
if the compatibility assumption of the model is violated.

On the other hand, the SB-MI framework, which is proposed in this paper, is capable
of easily dealing with incompletely observed mixed-scale variables in the covariate
distribution without using FCS. Therefore, we do not have to consider whether the
compatibility assumption holds, and thus, we can assume a nonlinear regression, such
as a linear regressionwith quadratic terms, Cox proportional hazardsmodel, or logistic
regression model on the substantive model even when the variables include discrete
and non-normal continuous variables. The simulation studies show that the proposed
method gives the best estimator in terms of MSE in cases where MICE-FCS and
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SMC-FCS result in biased estimates due to the violation of the model compatibility
assumption. Furthermore, the proposed model is more robust when the distributions
of the missing variables are non-normal. Since it is usual that some variables do
not follow the normal distribution, and hence, the compatibility assumption is not
satisfied, the results suggest that the SB-MI approach is very practical. NP-MI is a
method imputing missing values using nonparametric specification, but they suffer
from uncongenial analysis model. Although missForest, which accommodates the
random forest approach, can sometimes give estimates closer to the “true” value com-
pared to the proposed and existing methods, it underestimates the variance of the
estimates, resulting in poor CIs. Consequently, it should not be applied to fields where
the results of statistical significance (or hypothesis testing) are concern to researchers.
The results of the real data analysis show that our proposed method can provide new
insights that cannot be obtained from existing statistically improper methods.

Further study is needed to improve the efficiency of the SB-MI algorithm. Since our
inference is based on the MCMC algorithm, the computation time required to obtain
valid estimates is higher than that of the existing imputation method. In addition, our
model can be extended to missing not at random (MNAR) by adding a submodel of
the missing mechanism to our semiparametric specification using PSBPM modeling.
However, it is very difficult to correctly specify the missing mechanism even if we
assume a nonparametric formulation. Consequently, we did not consider the missing
mechanism to be MNAR.

Another direction is to consider the case of high-dimensional covariates. Nonpara-
metric Bayesian regression with Dirichlet process attains good performance when the
number of the variables is large for its sample size, in general. For example, Hannah
et al. (2011) conducted Monte Carlo simulation on varying sample size and number
of covariates, showing that the Dirichlet process mixture regression results in smaller
MSE than the existing regression model such as OLS or Gaussian process. It is also
the case with the application to imputation. Si and Reiter (2013), which proposed
nonparametric multiple imputation for categorical missing covariates, conducted sim-
ulation studies under the number of the variables 50 and N = 1000. They showed
that nonparametric imputation using Dirichlet process mixture works well under such
high dimensions.

Recently, nonparametricBayesmodel includingDPMformuchmore higher dimen-
sion or sparse datasets has been proposed. For example, Tokdar et al. (2010) and Reich
et al. (2011) developed dimensionality reduction methods for Bayes nonparametric
regression. Li et al. (2015) proposed nonparametric Bayes regression model for high
dimensions using LASSO. Incorporating such models for missing data imputation
may be useful for larger-dimensional dataset.
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